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Abstract. Analytic approximations for the eigenvalues have been obtained using the two-point
quasifractional approximants method. Here we extend and generalize previous work where the
method was applied to determine eigenenergies of two-dimensional Coulomb potentials in the
presence of a magnetic field of arbitrary strength. We have also shown the advantage of our results
with respect to other calculations using the shifted 1/N method or Padé approximants.

1. Introduction

Radial potentials represent simplified versions of important physical situations encountered
in atomic and molecular physics as well as astrophysics, particle physics, plasma physics and
solid-state physics. Here we study the eigenenergies of a hydrogenic atom with a Coulomb
potential in the presence of an external linear term and an isotropic harmonic oscillator,

V (r) = −Z/r + gr + λr2. (1)

Potentials of the form V (r) = −Z/r + gr (linear plus Coulomb potential) have attracted
great interest in atomic and molecular physics and quantum chromodynamics. It corresponds
to a spherical Stark effect in hydrogen (Austin 1980, Vrscay 1985, Killingbeck 1977, 1978a),
where g is essentially the electric field and is expressed in atomic units of the electric field
Ehe

−1a−1
0 . For g < 0, V (r) corresponds to an unstable potential, where E(λ) is complex and

− ImE is inversely proportional to the mean lifetime of the exponentially decaying tunnelling
states or resonances. The spectra of families of elementary particles may be well described
by bound states of charmed-quark–charmed-antiquark pairs interacting through various non-
relativistic confinement potentials. For this reason this potential has been studied in the context
of non-relativistic quark confinement potentials and similar bound-state problems in particle
physics (Vrscay 1985, Banerjee 1979, Eichten et al 1978, Müller-Kirsten et al 1979, Gupta
and Khare 1979, Killingbeck 1977, Rein 1977, Eichten et al 1978, Quigg and Rosner 1979).
The potential V (r) = −Z/r + λr2 has been studied in the context of:

(a) the Zeeman quadratic effect in hydrogenic atoms (Avron 1991);
(b) lineshapes of x-rays emitted by ions, used as a density diagnostic in laser-fusion

experiments (Skupsky 1980); and
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(c) several problems confronted in ion-sphere models in plasma physics (Stewart and Pyatt
1966, Cauble et al 1984).

In particular, for high plasma densities the shift frequency in the x-ray spectral lines
emitted by laser-imploded plasmas can be explained using the ion-sphere model. In this case
the potential considered is (Skupsky 1980)

V (r) = −Ze2

r
+
(Z − 1)e2

2R0

[
3 −

(
r

R0

)2
]

r � R0 (2)

where R0 is the radius of a sphere containing enough free electrons (plus the bound electron)
to neutralize the ion, and it is given by R0 = ((Z − 1)/(4πne/3))1/3. Here ne is the number
density for free electrons. The first term in (2) is the nuclear potential which gives rise to the
normal hydrogen spectra. The remaining term is the potential generated by the surrounding
free electrons. This is the source of the line shift.

Killingbeck (1978b) used a potential V (r) = −Z/r + 2λr + λ2r2 to show that the energy
E(λ) for λ < 0 contains a component not given by the Rayleigh–Schrödinger perturbation
theory. In this analysis the −1/r term represents the gluon exchange potential and the 2λr+λ2r2

terms are responsible for confinement. Analytical solutions for the s-wave states for some
particular values of λ were obtained by Saxena and Varma (1982b). A generalized version
of the Killingbeck potential provides a convenient example to study quantum discontinuity
phenomena (Saxena et al 1988), since there exists a discontinuity in the eigenvalue spectrum
at λ = 0, as λ changes from positive to negative. The potential in (1) was suggested by
Gupta and Khare (1979) as a quark-confining potential on the basis of 3PJ splittings of
charmonium levels. Coincidences in the binding energy spectra of these potentials were
analysed by Chhajlany (1993) based on the invariance of the kinetic energy operator under a
discrete coordinate transformation.

For some special relations between Z, g and λ, the preceding potential (1) is a quasi-
exactly solvable potential (Bessis et al 1987, Roychoudhury and Varshni 1988, Dutra 1988),
and analytic solutions of the eigenfunctions and the eigenvalues can be found. However,
we consider here the calculation of the eigenenergy for the general case, that is, for any
value of g and λ. This potential and its particular cases have been studied in the context of
the Rayleigh–Schrödinger perturbation method (Saxena and Varma 1982a, Killingbeck 1977,
1978a, 1980, 1986), the moment method (Bessis et al 1987), analytic continued fraction theory
(Datta and Mukherjee 1980, Flessas 1982, Znojil 1983), the Hill determinant (Chaudhuri 1983,
1988, Chaudhuri and Mondal 1995), the Bender–Wu method (Avron 1991), the Padé method
(Austin 1980), the Bender–Wu WKB method (Mehta and Patil 1978), supersymmetric quantum
mechanics SUSYQM and the shifted 1/N method (Adhikari et al 1989, Roychoudhury and
Varshni 1988), and other methods (Dutra 1988, Vrscay 1987, Ivanov 1996).

The shifted 1/N expansion, for example, has been proven to provide good results for
potentials having a single minimum (Chatterjee 1990, Roychoudhury and Varshni 1990).
However, the numerical errors increase with increasing values of the coupling constant, and
the method becomes unreliable for large values of g and λ. Furthermore, the expressions
obtained by the 1/N method are very cumbersome if one needs to determine the derivative of
the eigenvalues in order to calculate, for instance, electric or magnetic susceptibilities, or other
electromagnetic functions. Also derivatives of the eigenvalues appear in some calculations, as
in the spectroscopy of heavy quarks (Müller-Kirsten et al 1979), where the value of the s-wave
wavefunction at the origin (needed to derive the leptonic widths) depends on the eigenvalues
and their derivatives. In these cases it is very convenient to have analytic solutions for the
eigenvalues instead of numerical integrations.
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In this paper we follow a methodology unlike the others. Using the perturbative quantum
mechanics analysis one can obtain expansions in power series valid only for small values of
the coupling parameter. It usually happens that the first term of these expansions does not give
enough accuracy for the applications, so if we want to expand the region of validity of our series
we should calculate more terms. However, the perturbation expansion fails quickly, due to the
small radius of convergence of this series. For large values of the coupling parameter, we can
obtain an asymptotic expansion exchanging the perturbed Hamiltonian with the non-perturbed
Hamiltonian. This procedure can be used only when the new non-perturbed Hamiltonian
has (old perturbed Hamiltonian) exact solutions for the eigenvalues and eigenvectors. The
quality of the results obtained in both expansions depends on the radius of convergence of
each expansion (Kleinert 1995).

The Padé, two-point Padé and Lauren–Padé methods have been used extensively in physics
(Baker and Graves-Morris 1981a, b, Bultherl 1987). However, the improvement introduced by
the two-point quasifractional approximant (TQA) method proposed by Martı́n and co-workers
(Chaldbaud and Martı́n 1986, Martı́n and Baker 1991, Martı́n et al 1992) has proved to be a
powerful procedure for obtaining the eigenvalues of a hydrogenic atom in a uniform magnetic
field of arbitrary strength in two dimensions (Martı́n et al 1992). In this paper we show
that this is also the case for three-dimensional (3D) radial potentials. The strategy of these
quasifractional approximants is to build an analytic bridge between the power series and the
asymptotic expansion, to obtain a unique analytic expression for the eigenenergies, using a
few terms of both expansions. The accuracy of the analytic approximations obtained with
this procedure is high for the whole range of values of the coupling parameters, even in the
region where both expansions are not convergent. The results are usually good for all values of
the coupling parameter independent of the radius of convergence of each expansion. In some
cases approximations with seven exact digits are obtained with expansions of zero radius of
convergence (Chaldbaud and Martı́n 1986).

The purpose of this work is to extend and improve the previous procedure using series
other than those obtained by the usual perturbation quantum theory. We will derive a single
analytic expression for the ground state and the first excited states energy 2S and 2P, with good
accuracy for the eigenvalues independent of the value of the parameters.

One of the differences between the TQA and the two-point Padé method is that, a power-
series and an asymptotic expansion are used, instead of two power series. Consequently,
instead of using only fractional functions we are forced to introduce non-fractional functions,
which we have denoted as auxiliary functions, in order to reproduce the singularities of the
exact function. The golden rule is that the function and the approximant should have the
same singularities in the region of interest. Undesirable singularities, that might appear in the
approximant, must be located outside of that region. In this way highly accurate results are
usually obtained with polynomials of low degree. In our case we look for the eigenvalues when
λ is positive, therefore our region of interest is the positive axis (λ > 0). Thus the auxiliary
functions must be chosen in such a way that the undesirable singularities have to be located
in the negative axis or in the left-hand complex plane. Another important advantage of the
TQA with respect to the Padé method is better accuracy for an equal number of parameters,
and therefore the system of equations to obtain those parameters is simpler.

In this paper, we have not used the Rayleigh–Schrödinger perturbation method (RS) to
obtain the power series for small values of the parameters. Instead of that, we have fixed Z and
g, and obtained the power series for the parameter λ > 0, using the hypervirial theorem (HVT)
and the Hellman–Feynman theorem (HFT). The HVT and HFT have been applied previously
to the problems of anharmonic oscillators (Hirschfelder 1972, Swenson and Danforth 1972,
Duncan and Jones 1993), the hydrogen atom with perturbation λr (Killingbeck 1978a), and



5324 E Castro and P Martı́n

the treatment of the Coulombic-like potentials in the presence of screening effects (Grant
and Lai 1979, Lai 1981). The energy and expectation values of the position coordinates can
be calculated as power series of the perturbation coupling parameters. In the perturbation
expansion method here used, there is no need to calculate the perturbed wavefunction, as
happens with the RS perturbation method. To obtain the perturbed energy neither do we
need the sum of matrix elements characteristic of the RS method. The preceding theorems
mentioned above (HVT and HFT) are useful to obtain the expansion for small values of g and
λ.

In contrast to our preceding paragraph, to obtain an asymptotic expansion, valid for the
intermediate and high values of λ, the classical RS perturbation method has been used. For
our calculations we have chosen a fixed value of g, obtaining approximants as a function of
only one parameter, the parameter λ. We have preferred to choose small values of g in order
to work with larger ranges of λ-values for bound states.

The form of our approximants for the ground state is just the same for all the excited states.
However, we have calculated only the eigenenergies for the ground state and the first excited
states 2S and 2P, because these are the important bound states. In these cases, the second and
third excited bounded states exist only for very small values of g and λ. Thus the calculations
of the approximants for those cases are not so important and can be omitted. Even for the
cases considered here, we have to choose a very small value of g in order to obtain results of
physical interest. Clearly the electron energy levels of the other states are so close to the free
state that ionization is produced immediately.

In every case we have determined the accuracy of our results by numerical integration
of the corresponding Schrödinger equation, using a fourth-order Runge–Kutta method. The
approximants, found here, are valid for any value of the parameter λ. The shifted 1/N method
fails for large values of λ. Furthermore, our method gives better accuracy than the shifted 1/N
method even in the region where that method gives good results. In addition, our approximation
involves only first-order polynomials, together with square roots of first-order polynomials,
therefore the computation can be done easily with a pocket calculator or by hand. The accuracy
of our approximants are very good, and as far as we know are well suited for all experimental
and theoretical applications.

The paper is organized as follows. In section 2 we discuss the necessary theoretical
background that is needed to yield the perturbation power series and the asymptotic expansions.
We also discuss here the procedure to obtain the two-point quasifractional approximants. In
section 3 we will compare, through a detailed numerical analysis, the accuracy of our results
with those obtained by other methods, such as the Padé method and the shifted 1/N method.
Finally, the last section is devoted to the conclusions.

2. Power series, asymptotic expansions and two-point quasifractional approximants

The Hamiltonian operator for a hydrogenic atom with a polynomial perturbation is

Ĥ = −1

2

d2

dr2
− 1

r

d

dr
− Z

r
+ gr + λr2 +

L̂2

2r2
(3)

where g and λ are the coupling parameters, and L̂2 is the angular momentum operator. Here
we use atomic units h̄ = e = me = 1. The number Z is like a scale factor, and is not
important for the explanation of our method. Thus we will consider Z = 1. Let us consider
first the calculation leading to the asymptotic expansion in λ. Here we take the unperturbed
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Table 1. Values of the coefficients of the power series and the asymptotic expansions for the 1S,
2S and 2P states for different values of the coupling parameter g.

State g a0 a1 a2 a3 b0 b1 b2 b3 b4

1S 0 −0.5 3 −32.25 1801.13 2.1213 −1.3418 −0.1577 0.0297 —
2S 0 −0.125 42 −2366.629 — 4.9497 −1.0467 0.0307 0.0688 0.001 84
2P 0 −0.125 30 −1674.339 — 3.535 −0.8946 −0.0354 −0.0023 −0.000 086
1S 0.1 −0.36 1.934 35.475 1362.75 2.1213 −1.3418 −0.1577 0.0652 —
2S 0.0001 −0.124 36 41.968 −2349.956 — 4.9497 −1.0466 0.0307 0.0689 0.001 8

Hamiltonian Ĥ0(r) and the perturbed potential V1(r) as

Ĥ0(r) = −1

2

d2

dr2
− 1

r

d

dr
+ λr2 +

L̂2

2r2
(4)

V1(r) = −1

r
+ gr Ĥ = Ĥ0(r) + V1(r). (5)

The eigenvalues and eigenfunctions of the unperturbed states are

Enlm = (
2n + l + 3

2

)√
2λ (6)

�nlm(r, θ, φ) = Nrle−(λr2/2)
1F1

(−n, l + 3
2 ; λr2

)
Ylm(θ, φ). (7)

Here N is the normalization constant, Ylm(θ, φ) are the spherical harmonics and the
1F1

(−n, l + 3
2 ; λr2

)
are the confluent hypergeometric functions (Greiner 1994). By using

the perturbation method of RS to third order we obtain

E
(RS)
nl (λ) = b0λ

1/2 + b1λ
1/4 + b2 +

b3

λ1/4
+ · · ·

=
∞∑
j=0

(
b
(0)
j λ(

1
2 +j) + b

(1)
j λ(

1
4 +j) + b

(2)
j λj + b

(3)
j λ−( 1

4 +j)
)

(8)

where the coefficients b0, b1, b2 and b3 are given in table 1 for the states 1S, 2S and 2P and
for different values of g. The second right-hand side is a way to group the first one, which is
convenient for the two-point quasifractional method. In the second part we change the notation
slightly, that is b(0)0 = b0, b(1)0 = b1, b(2)0 = b2 and b

(3)
0 = b3. The asymptotic expansion (8)

is decreasing in powers of λ1/4 and in all cases the values of the coefficients are decreasing.
This behaviour is different to that in the HF power series as is shown below.

Let us consider now how to calculate the power-series expansion valid for small values
of λ. By applying the HVT and HFT to Hamiltonian in (3), we derive a power series as a
function of both coupling parameters with a different split in perturbed and unperturbed terms.
In the case where the potential is a polynomial, the HVT and HFT method is much easier
to implement. It is the purpose of this paper to obtain the TQA as a function of only one
parameter, so the parameter g is fixed and must be specified from the beginning. The power
series is only convergent for small values of the coupling parameter of g. The dimensionless
Hamiltonian (3) can be cast as

Ĥ = −1

2

d2

dr2
− 1

r

d

dr
+ V2(r) (9)

where V2(r) is the sum of the centrifugal term and the confining potential defined in (1). The
result after applying the HVT and HFT method (Grant and Lai 1979) are

E
(HF)
nl (λ) = a0 + a1λ + a2λ

2 + a3λ
3 + · · · (10)
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where the coefficients a0, a1, a2 and a3 are given in table 1 for the states 1S, 2S and 2P, and
for different values of g. These series are divergent for any λ different from zero, however, it
will be used as the power series in our method.

Both expansions (8) and (10) together can be used to obtain quasifractional approximants
of high accuracy for any value of the coupling parameter λ, still in the regions where the series
are divergent.

Let us also point out another feature of our analysis, which we will call low or high
effectiveness. In a previous work (Martı́n et al 1992) we have explained the motivation behind
this terminology. However, it is also useful to stress the meaning of ‘effectiveness’ again in
the present context. For us the term effectiveness is used in the sense that the series of the
quasifractional approximant should have only powers of the variable appearing in the power
series of the function. Thus we do not want to set to zero coefficients of the approximate
series with no corresponding powers in the original series. Such a specification is necessary
because there are sometimes power terms in the approximant that do not appear in the original
series. In the Padé method this matter is usually ignored. Our effectiveness criterion is very
relevant, because it reduces the number of parameters to be determined to just the needed
ones. Considering the preceding expansions we note that the Hellman–Feynman expansion is
expressed in powers of λ, while the asymptotic expansion, in contrast, is expressed in powers
of λ1/4. If we choose as our variable λ1/4 instead of λ, then the approximant will have the right
asymptotic expansion, but in this case we have to cope with many undesirable powers such
as λ1/4, λ1/2, λ3/4, etc, which do not appear in the HF power series. This means that many
undesirable coefficients in the power series of the approximant have to be set to zero. This is
what we denote by low efficiency, and what we want to avoid. In contrast, high efficiency will
mean that the power series of the approximant have only terms with exponents equal to those
appearing in the perturbative analysis.

Considering the form given to the asymptotic expansion in (8), there we see a combination
of products of fractional powers with integer powers. The quasifractional approximant must
have the same singularities in the region of interest, and we have to select points outside of the
region of interest to put the undesirable singularities. If we choose λ or λ1/4 as an auxiliary
function we will have a branch point for λ = 0, which does not appear in the eigenvalue.
The auxiliary functions must reproduce the asymptotic behaviour of the eigenvalues, but
furthermore they should also be such that to reproduce the original power series, once combined
with the fractional functions. We must keep in mind that the branch points come in pairs. So
we should choose the form of auxiliary function as (1 +µλ)1/4 with µ > 0. In this way one of
the branch points is at infinity as required, and the second one is on the negative axis, which is
out of the region of interest for physics (λ > 0). Our simplest approximant will have the form

Ê
(1)
nl (λ) = 1

1 + µλ

[
(1 + µλ)1/2(p0 + p1λ) + (1 + µλ)1/4(P0 + P1λ)

+(q0 + q1λ) + (1 + µλ)−1/4(Q0 + Q1λ)
]

(11)

where (1 + µλ)1/2, (1 + µλ)1/4 and (1 + µλ)−1/4 are the non-fractional auxiliary functions.
The approximant in (11) is a combination of fractional powers with first-degree

polynomials. Here we will denote this kind of approximant as first order, thus the order
will be given by the degree of the polynomial with the highest degree.

The denominator for the fractional functions are the same. The reason is that we would
like to obtain only linear algebraic equations to determine the parameters of the approximants.
In the case of different denominators the equations for the parameters are not linear. It is
useful to leave µ as a free parameter to be determined later using the eigenvalue at one point.
Choosing the free parameter µ in this way we also avoid the occurrence of defects, so usual in
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Table 2. Systems of equations obtained for the two-point quasifractional approximants in the cases
of ground and first excited states.

Powers of λ Ground states First excited states

λ0 a0 = p0 + P0 + q0 + Q0 a0 = p0 + P0 + q0 + Q0

λ1 a1 + µa0 = 1
2µp0 a1 + µa0 = 1

2µp0

+ 1
4µP0 − 1

4µQ0 + p1 + P1 + q1 + Q1 + 1
4µP0 − 1

4µQ0 + p1 + P1 + q1 + Q1

λ2 a2 + µa1 = − 1
8µ

2p0 − 3
32µ

2P0 a2 + µa1 = − 1
8µ

2p0 − 3
32µ

2P0

+ 5
32µ

2Q0 + 1
2µp1 + 1

4µP1 − 1
4µQ1 + 5

32µ
2Q0 + 1

2µp1 + 1
4µP1 − 1

4µQ1

λ3 a3 + µa2 = − 3
48µ

2p0 − 7
128µ

3P0 —

− 15
128µ

3Q0 − 1
8µ

2p1 + 3
32µ

2P1 − 5
32µ

2Q1

λ1/2 p1 = √
µb0 p1 = √

µb0

λ1/4 P1 = µ3/4b1 P1 = µ3/4b1

λ0 q1 = µb2 q1 = µb2

λ−1/4 Q1 = µ5/4b3 Q1 = µ5/4b3

λ−1/2 — p0 = 1
µ1/2 (µb4 + 1

2 b0)

the Padé method. Here the word ‘defect’ is applied in the same sense as in the Padé method,
that is, an extraneous zero in the denominator and a nearby one in the numerator (Baker and
Graves-Morris 1981a, b).

To determine the values of the parameters p0, p1, P0, P1, q0, q1, Q0 and Q1 in the
quasifractional approximant (11), we have to consider that the power series and the asymptotic
expansion of the quasifractional approximant should coincide with those power series and the
asymptotic expansion, calculated previously in (8) and (10).

For the ground state we have used an equal number of terms coming from the power series
and from the asymptotic expansion. In this way we find a system of eight equations with
eight unknowns. Table 2 gives the system of equations used to calculate the parameters of the
approximant of the eigenenergies for the 1S states with g = 0 and 0.1.

For the first excited state the coefficients of the power series increase strongly with the
power of λ (see table 1), and the ranges of validity of these series are very small. Clearly,
only the terms a0, a1 and a2 can be used significantly. The coefficients of the other terms are
too large. We have taken g = 0.1 and 0.0001 for the states 2S and 2P, respectively. The first
excited state 2P for g = 0.1 is very close to the ionization level for any value of λ, which is
the reason we have to choose a much smaller value of g in order to obtain significant values
for the eigenvalues. This is also the reason for such large values of the coefficients of λ, for
powers larger than λ3. The behaviour of the asymptotic expansion is much better, since the
values of the coefficients do no change so much for any g. The preceding considerations
lead us to use five terms of the asymptotic expansion (one term more than in the ground
state) and three terms of the power series (one term less than in the ground state) for the first
excited state 2S and 2P. In this way we are keeping the same number of equations as in the
ground state, and all the parameters of the approximant can be determined as a function of
the free parameter µ. Table 2 gives the system of equations used to calculate the parameters
of the approximant for the eigenenergies of the 2S and 2P states in the cases g = 0, 0.1 and
0.0001.

To determine the free parameter µ, we calculate numerically the value of the eigenenergy
Enl(λ) for one value of the coupling parameter λ. The value of µ is determined by the
condition that the TQA Ê

(1)
nl (λb) is equal to Enl(λb). The value of λ to be considered, denoted

by λb, should be for an intermediate value in the region where the potential series and the
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Table 3. Values of the coefficients of the parameters p′s, q ′s, P ′s, Q′s and µoptimal for the TQA.

State g p0 P0 p1 P1 q0 Q0 q1 Q1 µoptimal

1S 0 0.1363 −0.4278 22.1761 −45.3556 −0.0806 −0.1280 −17.2376 −10.4865 109.2843
2S 0 0.3956 −7.4679 31.9241 −17.1439 14.9199 −7.9725 1.2768 7.2683 41.5978
2P 0 0.2646 −2.3624 23.5694 −15.3979 5.4361 −3.4633 −1.5750 −0.2624 44.4412
1S 0.1 −0.0680 −0.6620 27.9917 −64.320 −0.287 −0.082 −27.464 41.243 174.1192
2S 0.0001 0.3969 −7.5008 31.8052 −17.048 15.0044 −8.0248 1.2673 7.2062 41.2888

asymptotic expansion do not give good accuracy. This intermediate value acts as a bridge
between both expansions.

To find the eigenenergy at this intermediate point, we can use exact solutions such as, for
instance, a quasi-exactly solvable Hamiltonian or any other method, if there is any. In other
cases we have to calculate it by numerical computation. It happens sometimes that the values
of λ for which we can obtain an exact solution are very small or very large, and in that case
we must also use a numerical computation at one point. We have determined this root for µ
using the Newton–Raphson method (Nakamura 1992). In order to facilitate our analysis, we
define the dimensionless parameter λ′ = λ/(1 + λ).

The procedure to determine µ by using the quasi-exactly solvable solutions fails, because
the values of λ′

b are very small in the cases considered here, thus they are not in the intermediate
region (see the appendix).

Our procedure is as follows: the eigenenergies Enl(λ) at the bridge point λ′
b = 0.1 are

calculated from the Schrödinger equation, using the Runge–Kutta method (Neethiulagarajan
and Balasubramanian 1989), with an accuracy of five digits and a step (h = 0.01. Table 3
presents the optimal values of µ and the values of the parameters p0, p1, P0, P1, q0, q1, Q0

and Q1 calculated from the quasifractional approximant (11) for the states 1S, 2S and 2P for
g = 0, 0.1 and 0.0001.

3. Analysis and discussion

In figures 1(a) and (b) we present the values of the eigenenergies of all the states studied in this
work, as a function of the normalized coupling parameter λ′, for some different values of the
coupling parameter g. Our results are shown by several kinds of broken curves. On the other
hand, we have determined the eigenvalues by using a numerical solution of the Schrödinger
equation for several values of λ′, which are shown in the figures with crosses. The results
obtained using TQA coincide to a high degree of accuracy with the numerical results. We
can see that the first excited state has bound states only for small values of λ′. For other
higher states (n � 2), the energy levels are just immediately the ionization level, and it is
very difficult to put the atoms in those states. Thus we have not determined approximants in
these cases. In order to find the accuracy of our results, we have calculated the absolute errors
with respect to the numerical solution. They are shown in figures 2(a)–(c). The maximum
errors of the approximants (i.e. (Emax) are 0.04 for both 2S (g = 0) and 1S (g = 0.1) states
(see figures 2(b) and (c)). They are reached when λ′ is about 1, which means they are out
of the region of physical interest. These maximum errors are 0.002 for the 1S (g = 0) and
2S (g = 0.1) states (see figures 2(a) and (b)). For small values of λ′, in the region of bound
states, for all the states the absolute errors are smaller than 0.005. However, if we consider
only the bound state (λ′ < 0.2) in the 1S (g = 0) state, the maximum error is smaller than
0.0003.
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Figure 1. Eigenenergies of the two-point quasifractional approximant Ê(1)
nl (λ

′) and its respective
numerical values (crosses), as a function of the normalized coupling parameterλ′. (a) Eigenenergies
spectra with g = 0. Chain curve, 1S state; broken curve, 2S state; dotted curve, 2P state. (b) Chain
curve, 1S state (g = 0.1); dotted curve, 2S state (g = 0.0001).

To study the advantages of our method, we compare our results with those obtained using
the shifted 1/N method for all the states calculated. In the ground state with g = 0 we have
also calculated the one-point Padé approximant P [2/1](λ) (Baker and Graves-Morris 1981a, b),
using the power series EHF

10 (λ) equation (8), giving

P [2/1](λ) = a0a2 + (a1a2 − a0a3)λ + (a2
2 − a1a3)λ

2

a2 − a3λ
. (12)
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Figure 2. Absolute error as a function of the normalized coupling parameter λ′, corresponding to
(a) the 1S state (g = 0): chain curve, two-point quasifractional approximant; triple-dotted curve,
shifted 1/N method; double-dotted chain curve, asymptotic expansion (RS); broken curve, one-
point Padé approximant P [2/1](λ); long-chain curve, potential series (HF). (b) 2S state (g = 0):
double-dotted chain curve, two-point quasifractional approximant; broken curve, shifted 1/N
method. 2P state (g = 0): chain curve, two-point quasifractional approximant; dotted curve,
shifted 1/N method. (c) 1S state (g = 0.1): double-dotted chain curve, two-point quasifractional
approximant; broken curve, shifted 1/N method. 2S state (g = 0.0001): long-chain curve, two-
point quasifractional approximant; dotted curve, shifted 1/N method.

Figure 2(a) illustrates the absolute errors of all the approximation methods determined
here for the 1S state, with g = 0. In order to facilitate our analysis, our abscissa is the
dimensionless parameter λ′. Looking at this figure we note that the potential series EHF

10 (λ)
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Figure 2. Continued.

and the Padé approximantP [2/1](λ) are only suitable for small values of the coupling parameter.
The asymptotic expansion, however, shows a wider range of applicability, with good accuracy
not only for large values of λ, but also for intermediate values. The accuracy of our method
is much better than that of any other methods for any λ′. Comparing our approximant with
the shifted 1/N method, we see that the error of our approximant is always smaller, and the
difference in accuracy for large values of λ′ (λ′ ∼= 1) is even more remarkable.

Figure 2(b) shows the absolute errors for the first excited states 2S and 2P, with g = 0.
Here if we compare with the shifted 1/N method we obtain much better accuracy for any λ′,
and our results are even better than in the 1S case.

Figure 2(c) show the absolute errors of the two-point quasifractional approximant and
the shifted 1/N method calculated as a function of the normalized coupling parameter λ′,
for the ground state 1S and the first excited state 2S, with g = 0.1 and 0.0001, respectively.
Roychoudhury and Varshni (1988) have shown using SUSYQM that the accuracy of the shifted
1/N method varies considerably with the parameters Z, g and λ. However, the examination of
figure 2 show that the accuracy of our first-order approximant is better than that of the shifted
1/N method for all values of the parameter λ′, and, furthermore, the difference in accuracy is
very significant. Furthermore, our accuracy is better than four digits in the bound-state region,
and also for large part of the region with positive eigenenergy. Approximants with higher
accuracy can be obtained using higher approximants, which also means that more terms of the
perturbation expansions have to be calculated.

Now consider the errors in detail. First, we have calculated numerically the eigenvalues
for any value of λ. We have also performed the calculation using the shifted 1/N method.
Here there is a difficulty, because the parameter r0 has to be calculated to an accuracy of five
digits. Thus the computation time is very large, and much larger than that used to determine
all the parameters of our approximant. The computation of the energy using the approximant
can be obtained easily, by hand or with a pocket calculator. Furthermore, we can derive and
integrate the eigenenergy with respect to the parameter λ, and look for the behaviour of this
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eigenvalues when λ is changed. The numerical computation of the eigenenergy using the
Schrödinger equation is very cumbersome and it takes a lot of computer time. The advantage
of the approximant is very clear. Furthermore, as we showed before, the accuracy of the
approximant is so high that it will be sufficient for all the applications.

4. Conclusions

We have developed a new method to obtain an analytic approximation for the eigenenergies
of a hydrogenic atom with linear and isotropic harmonic oscillator terms using two-point
quasifractional approximants. Our approximant has been determined for the ground state 1S
and for the first excited states 2S and 2P, which are the most important states for applications.
The energy levels of the other excited states are very close to the ionization energy.

The approximants obtained here are for a fixed value of g and for any value of λ. There
is only a unique approximant for any λ. Thus the study of the eigenenergies as a function of
λ can be easily done. Differentiation or integration with respect to this parameter λ can also
be performed. Thus, for instance, electric or magnetic susceptibilities can be obtained easily
from our analytic results. Derivatives of eigenvalues also appear explicitly in some calculations
in heavy quark spectroscopy and quantum chromodynamics. Though the numerical solution
of the Schrödinger equation for given values of g and λ is not so difficult to obtain, the
determination of the preceding electromagnetic functions by that method is very cumbersome.
The structure of our approximant is a quotient of first-degree polynomials and also the square
root of first-degree polynomials. Thus the calculation of the eigenvalues is very simple, and it
can even be performed by hand.

Here we have used the Hellman–Feynman theorem, the hypervirial theorem and
the Rayleigh–Schrödinger perturbation method to obtain the power series and asymptotic
expansions, respectively.

In our procedure we find the TQA using the power series and the asymptotic expansion
of the eigenvalues as a function of the coupling parameter λ. Our approximants depend on
a given number of parameters p, q, P , Q and µ. The number of equations is equal to the
number of unknowns p, q, P and Q, and µ is denoted as a free parameter. The optimum µ is
obtained by calculating the eigenenergy for one value of λ denoted by λb, which is the bridge
point between the power series and the asymptotic expansion.

The advantage of our method is that for a fixed value of g we obtain only one analytic
expression with good accuracy for all values of the coupling parameter λ. Using a two-point
quasifractional approximant to first order we can see that the maximum absolute error of
our approximant is less than the maximum absolute error of the shifted 1/N method. The
difference in accuracy of both methods is notable for intermediate and high values of the
coupling parameter λ′. Our method gives an accuracy of at least four digits for most values of
λ′, and the errors change very little with the parameter. Thus our accuracy will be enough for
all the physical applications already known.

It is important to point out that, although the potential considered here is quasi-exactly
solvable, the method presented here can be used, in principle, for any potential with spherical
symmetry, because the quasi-exactly solvable conditions have not been used.

The energy values given by the shifted 1/N method can give poor or erroneous results
(see the conclusions of Roychoudhury and Varshni (1990)) in the case where the potential has
more than one well (it can also give incorrect radial quantum number for a level). However,
our method does not have this limitation since for our calculations we do not depend on the
minima of the potential. Therefore, the method presented here can be used, in principle, for a
radial potential with several wells.
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Appendix

By using the analytic methods proposed by Bessis et al (1987), or by Roychoudhury and Varshni
(1990), we know that the potential given in (1) is quasi-exactly solvable, and for the ground
state there is only one equation relating Z, g and λ (see equation (2.8) of Bessis et al (1987))
and for the first excited state there are two equations (see equation (24c) of Roychoudhury and
Varshni (1990)). Fixing Z = 1 and g = 0.1, for the ground state, we obtain a unique value
of λ′

b (= 0.005, i.e. λb = 0.004 97), and the corresponding eigenenergy is E10 = −0.35 (see
equation (21) of Roychoudhury and Varshni (1990)). Clearly, here λ is very small and if we
find the root of µ such that Ê(1)

10 (µ) = E10(λ = 0.005), we find µopt = 5763.523. This root
has been determined using the Newton–Raphson method (Nakamura 1992). This value is not
a good value and the accuracy of the approximant is not good. The reason for this is that the
value of λ used as an intermediate point is very small, forcing the TQA to follow the behaviour
of the potential series, which diverges very quickly.

In a similar way the λ′
b values for the first excited states 2S and 2P are 4.999 × 10−9 and

2.0016×10−8. None of these points can be used as bridge point, between the power series and
the asymptotic expansion. For the preceding reasons we decided in this paper to determine
the values of the energy for all values of g with the bridge point λ′

b = 0.1. We could use any
other intermediate point, for example, we could have chosen λ′

b = 0.2, and we have checked
that the results are almost of the same accuracy.
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Martı́n P, Rodriguez-Nuñez J J and Marques J L 1992 Phys. Rev. B 45 8359
Mehta H and Patil S H 1978 Phys. Rev. A 17 34
Müller-Kirsten H J W, Hite G E and Bose S K 1979 J. Math. Phys. 20 1878
Nakamura S 1992 Applied Numerical Method with Software (Englewood Cliffs, NJ: Prentice Hall) p 62
Neethiulagarajan A and Balasubramanian S 1989 Eur. J. Phys. 10 93
Quigg C and Rosner J L 1979 Phys. Rep. 56 167
Rein D W 1977 Nuovo Cimento A 38 19
Roychoudhury R K and Varshni Y P 1988 J. Phys. A: Math. Gen. 21 3025
——1990 Phys. Rev. A 42 184
Saxena R P and Varma V S 1982a J. Phys. A: Math. Gen. 15 L149
——1982b J. Phys. A: Math. Gen. 15 L221
Saxena R P, Srivastava P K and Varma V S 1988 J. Phys. A: Math. Gen. 21 L221
Skupsky S 1980 Phys. Rev. A 21 1316
Stewart J C and Pyatt K D Jr 1966 Astrophys. J. 144 1203
Swenson R J and Danforth S H 1972 J. Chem. Phys. 57 1734
Vrscay E R 1985 Phys. Rev. A 31 2054
——1987 Int. J. Quantum Chem. 32 613
Znojil M 1983 J. Phys. A: Math. Gen. 16 213


